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Abstract. In the framework of the Model of the Stochastic Vacuum elastic hadron-hadron scattering,
photo- and electroproduction of vectormesons and also F2(Q2) can be well described at center of mass
energy approximately 20 GeV. The scattering amplitude is derived by smearing the color dipole-dipole
scattering, which is calculated nonperturbatively in the Model of the Stochastic Vacuum, with appropriate
wavefunctions. For the considered processes the dipoles have extensions in the range of hadron sizes.
We now extend this idea to small dipoles and high energies. The energy dependence is modeled in a
phenomenological way: we assume that there a two pomerons, the soft- and the hard-pomeron, each being
a simple pole in the complex angular plane. We couple dipoles of hadronic size to the soft-pomeron and
small dipoles to the hard-pomeron. For small dipoles we take the perturbative gluon exchange into account.
By that way we obtain an energy dependent dipole-dipole scattering amplitude which can be used for all
the processes with the same parameters. We show that this approach can describe in addition to all the
low energy results (20 GeV) also the HERA data for the considered processes in a large energy and Q2

range. Especially the right transition from the soft to the hard behavior is observed.

1 Introduction

One of the most exciting results of HERA is the observed
very different energy behavior of γ∗-p scattering depend-
ing on the virtuality of the photon and the considered fi-
nal state. There are now many data for elastic photo- and
electroproduction of vectormesons and the proton struc-
ture function F2(x, Q2) in a large kinematic regime which
allow to study this subject in detail.

In most of the theoretical approaches these processes
are studied by first calculating the fluctuation of the pho-
ton into a color neutral quark-antiquark pair, a so called
color dipole. This color dipole then interacts with the pro-
ton. Depending on the virtuality of the photon and on the
final state of the reaction one can vary the size of the
dipoles mainly involved in the interaction. For example
by increasing Q2 the dipoles contributing to F2 or to elec-
troproduction of vectormesons become smaller.

The energy dependence of the total cross sections of
hadronic interactions can be well described by the
Donnachie-Landshoff parameterization [1], that is by the
soft-pomeron exchange based on Regge theory [2]. But the
HERA results show that processes with small dipoles in-
volved rise much stronger with the energy, as can be seen
for example from J/Ψ production or from the behavior
of F2 for small x and large Q2. The interaction responsi-
ble for this strong rise was called hard-pomeron exchange.

a Supported by a MINERVA-fellowship

Usually the calculations for large Q2 and small x are based
on perturbative QCD like the BFKL pomeron [3,4] or the
DGLAP evolution [5–8]. For the BFKL approach to F2
see for example [9–11] and for the DGLAP approach [12–
14]. But if x is small enough, W , the internal cm-energy
is still the biggest scale and thus Regge theory should be
applicable.

There are some approaches to describe the transition
from the soft- to the hard-pomeron behavior. One idea is
that the hard-pomeron is always present and the transi-
tion to the soft behavior is due to shadowing effects [15,
16]. Another possibility is to vary the pomeron intercept
with Q2 [17,18]. The behavior of the proton structure
function at small x and small or moderate Q2 can be de-
scribed [19–21] by splitting the dipole-proton scattering
in a perturbative and nonperturbative regime where the
involved dipoles are small or large respectively. For the
small dipoles the perturbative QCD methods (DGLAP)
are used. For the nonperturbative regime one uses vec-
tormeson dominance which allows, by using the additive
quark model, to connect the scattering of large dipoles
with the proton with the Regge behavior of the measured
total hadronic cross sections. A similar approach based
on BFKL exists for the electroproduction of vectormesons
[22,23].

In our approach, which we use to describe F2 and the
vectormeson production simultaneously, we assume that
there are two pomerons, the soft- and the hard-pomeron,
each being a simple pole in the complex angular plane. We
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Fig. 1. Wegner-Wilson loops formed by the paths of quarks
and antiquarks inside two dipoles. The impact parameter ~b is
the distance vector between the middle lines of the two loops.
~R1 and ~R2 are the vectors in the transverse plane from the
quark lines to the antiquark lines of dipole 1 and 2 respectively.
The front lines of the loops guarantee that the dipoles behave
as singlets under local gauge transformations

then make a phenomenological ansatz for the coupling of
these pomerons to the color dipoles in such a way that the
hard-pomeron couples to small and the soft-pomeron to
large dipoles. The different energy behavior of the consid-
ered processes is due to a drastically change of the relative
weight of the two pomeron contributions because of the
different sizes of the dipoles involved in the scattering pro-
cesses. This scheme is very similar to a recent publication
of Donnachie and Landshoff [24]. In this paper DL showed
that by fitting the hard-pomeron intercept the F2 data for
not too large x can be described by the two pomerons and
the leading Regge-trajectory. In contrary to our work they
also had to fit the coupling of the pomerons as a function
of Q2.

The building block of our calculation is the dipole-
dipole scattering amplitude. It is calculated in the frame-
work of the Model of the Stochastic Vacuum (MSV) [25,
26]. Within this framework elastic hadron-hadron scatter-
ing [27–29], hadron-dipole scattering [30], photo- and elec-
troproduction of vectormesons [31,32] and π0 [33] and the
proton structure function F2 [34] were calculated but the
cm-energy was always fixed at 20 GeV. We now extend
this approach to higher energies as described above. If we
consider processes where one of the dipoles is very small
we include in our approach also the leading perturbative
gluon exchange.

Our paper is organized as follows: In Sect. 2 we re-
view our calculation of the dipole-proton scattering am-
plitude within the MSV. In Sect. 3 we describe in detail
how the two pomerons and their coupling to the dipoles is
in-cooperated in our model. We also calculate the leading
perturbative contribution for very small dipoles. In Sect. 4
we present our results for the different reactions and close
with a summary in Sect. 5. For some technical steps we
append an appendix.

2 Review of our approach

All our previous applications of the MSV on high-energy
scattering are based on dipole-dipole scattering smeared
with appropriate wavefunctions. In this letter we do not
derive the dipole-dipole result but refer to the literature
and reviews [27,35,36]. In the remaining section we follow
the very recent paper [33].

The soft high-energy scattering is calculated first us-
ing an eikonal approximation in a fixed gluon background
field [37]. The local gauge invariant color dipoles are rep-
resented in space-time as Wegner-Wilson loops W[S] =
P exp

[−ig
∮

∂S
Aµ(z) dzµ

]
whose lightlike sides are formed

by the quark and antiquark pathes, and front ends by
the Schwinger strings ensuring local gauge invariance (see
Fig. 1).

The resulting loop-loop amplitude is not only speci-
fied by the impact parameter, but also by the transverse
extension vectors of the loops. The dipole-dipole profile
function is then obtained by integrating over the gluon
background field:

J̃(~b, ~R1, ~R2) (1)

=
−〈W1W2

〉
A〈 1

NC
Tr W1(0, ~R1)

〉
A

〈 1
NC

Tr W2(0, ~R2)
〉

A

,

where the brackets denote functional integration over the
background field A. The path ∂S1 of the closed Wegner-
Wilson loop W[S1] in

Wi =
1

NC
Tr {W[Si] − 1} (2)

is a rectangle whose long sides are formed by the quark
path Γ q

1 = (x0,~b/2 + ~R1/2, x3 = x0) and the antiquark
path Γ q

1 = (x0,~b/2− ~R1/2, x3 = x0) and whose front sides
are formed by lines from (T,~b/2 + ~R1/2, T ) to (T,~b/2 −
~R1/2, T ) for large positive and negative T (we will then
take the limit T → ∞). W2 is constructed analogously.
The denominator in (1) is the loop renormalization.

By expanding the exponentials of the Wegner-Wilson
loops and using the Gaussian approximation adopted in
the MSV we can express the dipole-dipole profile function
(1) as a product of nonlocal gluon condensates. For this
condensate we make a nonperturbative ansatz in agree-
ment with lattice measurements of this quantity [38,39].
It was shown that the leading contribution to the dipole-
dipole profile function is even under charge parity, like the
pomeron and two gluon exchange, and is given by

J̃ =
1

8N2
C(N2

C − 1)122 χ̃2 (3)

where
χ̃2 = (χ̃11 − χ̃12 − χ̃21 + χ̃22)

2
.

The real functions χ̃ij depend only on the transversal co-
ordinates and are given by [27,30]:

χ̃ij = 〈g2FF 〉
(

κ

∫ 1

0
dw1

∫ 1

0
dw2 ~r1i · ~r2j
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Fig. 2. A geometrical picture of the scattering in the transver-
sal plane. The constituents are denoted by the black dots. The
two dipoles scatter of with impact parameter ~b. The thick lines
from the central point to the (anti-)quarks denote the paths
covered by the integration in (4). The term χ̃ij represents the
contribution of a correlator of a field strength on the piece i of
dipole 1 with a field strength j of dipole 2. The integration has
to be performed over all the transversal projections of the sur-
face, i.e. 1 and 2 of dipole 1 combined with 1 and 2 of dipole 2.
The impact parameter ~b points to the lightcone barycenter of
the dipoles, i.e. the distance between the quark and antiquark
is divided according to the longitudinal momentum fraction of
each constituent which is given by z and z̄ = 1 − z [31]

×f1 (|w1~r1i − w2~r2j |) + (1 − κ)f2 (|~r1i − ~r2j |)
)

. (4)

The vector ~r1i (~r2j) points to constituent i (j) of dipole 1
(2) and is a function of ~b, ~R and z as indicated in Fig. 2.
The usual gluon condensate is denoted by 〈g2FF 〉 and the
parameter κ and the two functions f1 and f2 depend on
the explicit ansatz for the nonlocal gluon condensate and
fall off on the length scale given by the correlation length
a. Their explicit form is given in [30]. In [27] it was also
shown that one of the w-integrations in (4) can be done
analytically.

By smearing the dipole-dipole profile function with ap-
propriate wavefunctions we obtain the process dependent
profile function J . To obtain the scattering amplitude at
center of mass energy s and momentum transfer t = − ~∆2

⊥
one has to integrate over the impact parameter ~b

T (s, t) = 2is
∫

d2b e−i ~∆⊥·~b J. (5)

For the total cross section follows

σtot =
1
s
ImT (s, 0) (6)

which is independent of the center of mass energy s. For
the differential cross section we obtain

dσel

dt
=

1
16πs2 |T |2. (7)

As mentioned these results are independent of the energy
s. The parameters of the MSV were fixed for p-p̄ scattering
at

√
s = 20 GeV [27]. Using the most general ansatz of the

MSV the parameters change slightly as calculated in [40]
and published in [31]:

a = 0.346 fm , 〈g2FF 〉 = 2.49 GeV4 ,

κ = 0.74 , SP = 0.739 fm, (8)

where SP is the proton size. Within this framework elastic
hadron-hadron scattering [27–29], hadron-dipole scatter-
ing [30], photo- and electroproduction of vectormesons [31,
32] and π0 [33] and the proton structure function F2 [34]
were calculated. In all these references we were limited
to a cm-energy of about 20 GeV and dipoles of hadronic
size (thus for photons the virtuality was limited). For very
small dipoles this approach has to be modified because
then a perturbative calculation has to replace the nonper-
turbative Model of the Stochastic Vacuum.

In the next section we introduce an energy dependence
in a phenomenological way: we assume that there are two
pomerons each being a simple pole in the complex angular
plane. The coupling of these pomerons will be modeled in
such a way that the scattering of two dipoles of hadronic
size is due to soft-pomeron exchange whereas small dipoles
couple to the hard-pomeron. We also extend our approach
to very small dipoles by taking the perturbative contribu-
tion to (1) into account.

3 Extension to very small dipoles
and high energies

In this section we extend our model to very small dipoles
and high energies. Our approach is based on the dipole-
dipole scattering. The experimental data seem to indicate
that the energy dependence must be very different for
the scattering of small and large dipoles. In this paper
we model this transition from small to large dipoles in a
phenomenological way and introduce an effective dipole-
dipole interaction: The energy dependence is put by hand.
We assume that there are two pomerons which are simple
poles in the complex angular plane. The coupling to the
dipoles is modeled in such a way that for small dipoles the
hard-pomeron and for large dipoles the soft-pomeron gives
the main contribution to the scattering process. The cut
between the soft- and hard-pomeron will be given by c. In
addition we have to switch off the contributions calculated
in the nonperturbative MSV if one of the dipoles is very
small. Therefor we introduce a second cut rcut. The non-
perturbative interaction of large dipoles, larger than rcut,
is calculated using the Model of the Stochastic Vacuum.
With this modification we can already describe very well
the experimental data of vectormeson production and F2
for not too large Q2 ≤ 35 GeV2. If we want to extend the
approach to even harder processes, which is not the main
goal off this paper, we have to calculate the interaction
of dipoles smaller than rcut perturbatively. For simplicity
we will use only the leading perturbative contribution, the
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two gluon exchange. The two cuts, c and rcut, are the two
important new parameters in our model. To implement
these scheme in our model we proceed as follows:

We begin with the two pomerons. As already men-
tioned our idea is the following: for physical processes
that involve large dipoles, especially elastic hadron-hadron
scattering, we want to obtain the soft-pomeron behavior,
that is σtot ∝ √

s
0.16. For processes which are dominated

by small dipoles we want to obtain the hard-pomeron.
Here we take the proton structure function F2(x, Q2) at
Q2 ≈ 20 GeV2 as a function of x for small x as mea-
sured at HERA [41,42]. Off course there exist also data
for much larger Q2 but to separate the hard- from the
soft-pomeron W has to be very large that is x very small.
For Q2 >> 20 GeV2 this kinematic regime (x ≤ 0.01) is
still not covered so well experimentally. For Q2 = 20 GeV2

the data are well described by F2 ∝ W 0.56 [41,43], where
W 2 = Q2/x−Q2 +m2

P. We will not fit this hard-pomeron
power but take it as it is. To consider photo- and electro-
production of vectormesons we need also the t dependence
of the pomerons. For the slope of the soft-pomeron we take
0.25 GeV−2, the value obtained by Donnachie and Land-
shoff. There is evidence that the slope of the hard-pomeron
is quite small because the experimental data indicate that
there is no shrinkage of the B-slope for photoproduction
of J/Ψ [44]. In this paper we assume the slope of the hard-
pomeron to be zero at least for |t| ≤ 0.5 GeV2. To take
the energy dependence of the two pomerons into account
we replace the dipole-dipole profile function (3) integrated
over the impact parameter with∫

d2b e−i ~∆⊥·~b 1
8N2

C(N2
C − 1)122 χ̃2

(
~R1, ~R2

)

×
(

fh(R1, R2)
(

W

20 GeV

)0.56

+ fs(R1, R2)
(

W

20 GeV

)2(0.08+0.25GeV−2t)
)

(9)

where fh(R1, R2) and fs(R1, R2) are the couplings of the
hard- or soft-pomeron to dipoles of given size. Here W
denotes the internal energy and is

√
s for elastic hadron-

hadron scattering. Due to the experiments we assume that
fh has to vanish for two large dipoles whereas fs has to
vanish if at least one dipole is very small. In this paper
we make the most simple ansatz for these couplings by
introducing only one parameter, the cut c between the
two pomerons:

fs(R1, R2) =
{

1 | R1 and R2 > c

0 | else

}

fh(R1, R2) =
{

1 | R1 or R2 < c

0 | else

}
. (10)

This hard cut between the soft- and hard-pomeron at
the scale c is off course an oversimplification of the real
physics. If we calculate in this framework the cross section
of dipole-dipole scattering we obtain for dipoles smaller

then c only the hard- and for dipoles larger than c only
the soft-pomeron contributions. In a more realistic model
one would expect a smooth transition, that is fh/s(R1, R2)
being smooth functions. However, it will turn out that our
very simple ansatz can describe the data very well which
shows that only the scale of the cut is important and not
the explicit form of the couplings. We want also mention
that the energy behavior of the scattering of two small
dipoles is yet not tested experimentally and γ∗-γ∗ scat-
tering will be a very interesting probe for this issue. In
this paper one dipole is always big because we only look
at elastic proton scattering.

To investigate physical processes we then smear the
energy dependent dipole-dipole profile function (9) with
appropriate wavefunctions. By this way we obtain to all
processes contributions from the two pomerons but the
relative weight of them will depend strongly on the wave-
functions. Here we have to make an important remark:
The energy dependence of the scattering amplitude of
physical processes can only be written as

a W 2(1.08+0.25GeV−2t) + b W 2∗1.28

if the wavefunctions are independent of the energy W .
This will be not the case for photo- and electroproduction
of vectormesons or for F2. The reason is that we have to
introduce an energy dependence of the photon wavefunc-
tion to ensure energy conservation and the validity of the
eikonal approximation adopted in our model. To do so we
have to cut the end-points of the wavefunction for small
W (for more details see the next section). The end-points
of the wavefunctions are especially important for large val-
ues of Q2 and the cutting diminishes the cross sections.
For asymptotic large W , that is very small x this cutting
has no effect. So this energy dependence of the photon
wavefunction makes the effective energy dependence of F2
for very large Q2 > 20 GeV2 at intermediate x stronger
than W 0.56 in agreement with the experiment.

For elastic hadron-hadron scattering the dipole sizes
are larger than the cut c and thus only the soft-pomeron
contributes. This is true for all the processes that we have
investigated in the past. Also the cm-energy was limited
to 20 GeV and thus the results of this processes are un-
changed. This allows us to take the old values for the pa-
rameters of the MSV (8). For all these processes the energy
dependence will by given by the soft-pomeron. Smearing
the new dipole-dipole profile function with hard wavefunc-
tions, that is with very small mean size, we obtain a profile
function proportional to W 0.56. But increasing the mean
size of the dipoles we obtain a soft transition of the ef-
fective behavior from the hard- to the soft-pomeron be-
cause the relative weight of them changes drastically. This
transition will be seen for F2 and for electroproduction of
vectormesons by varying Q2, where we have for the J/Ψ
already for Q2 = 0 contributions from the hard-pomeron
resulting in a strong rise with W as measured at HERA.

The contributions of the hard-pomeron are important
if at least one dipole is small. But for very small dipoles
the dipole-dipole profile function has to be calculated per-
turbatively. The leading perturbative contribution to the
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dipole-dipole interaction (1) is easily calculated [40] re-
sulting in an additional contribution to (3) from the two
gluon exchange. Off course the two gluon exchange can
only be trusted for small dipoles and we take the gluon
exchange only into account if one of the dipoles is smaller
than a cut rcut. This contribution will only show up for
large Q2, which is not the regime of our main interest.
In addition it is well known that in this regime the much
more sophisticated perturbative approaches do describe
the data very well. Nevertheless we can extend our model
to larger values of Q2 by taking only the leading pertur-
bative contribution into account. We have to regularize
the gluon propagator for large distances, which are strong
suppressed due to rcut anyhow. In order to introduce as
less parameters as possible we use for the cutoff for the
gluon propagator the cut c between the soft- and hard-
pomeron. For the strong coupling we will use a running
coupling on the 1-loop level with ΛQCD = 1 fm, which is
frozen in the infra-red to αs(∞). This procedure results
in the following perturbative contribution to (3):

χ̃per = 12(N2
C − 1)4π [αs (~r1q − ~r2q)∆ (~r1q − ~r2q)

+αs (~r1q̄ − ~r2q̄)∆ (~r1q̄ − ~r2q̄)
−αs (~r1q − ~r2q̄)∆ (~r1q − ~r2q̄)
− αs (~r1q̄ − ~r2q)∆ (~r1q̄ − ~r2q)] , (11)

where the coupling αs is running on the 1-loop level

αs(r) =




αs(∞) | r > c

αs(∞) log(1 fm/c)
log(1 fm/r) | r ≤ c




and ∆ is the Fourier-transformed of the regularized gluon
propagator in the transversal plane

∆(~x) = F2

[
1

~k2 + 1
c2

]
(~x) =

1
2π

K0

( |~x|
c

)
. (12)

Taking for small dipoles this perturbative contribution
into account (9) becomes∫

d2b e−i ~∆⊥·~b 1
8N2

C(N2
C − 1)122

×
(
χ̃2 θ(R1 − rcut) θ(R2 − rcut) + χ̃2

per θ̃(R1, R2)
)

×
(

fh(R1, R2)
(

W

20 GeV

)0.56

+ fs(R1, R2)
(

W

20 GeV

)2(0.08+0.25GeV−2t)
)

(13)

where θ̃(R1, R2) is 1 if R1 or R2 is smaller than rcut and
0 else.

In the next section we present our results for elastic
hadron-hadron scattering, elastic photo- and electropro-
duction of vectormesons and the proton structure function
F2. We only fitted three parameters: the cut c between the
soft- and hard-pomeron, the strong coupling in the infra-
red αs(∞) and the cut rcut where we cut the contributions

of the MSV. We did not made a real fit to the data but
started with values which are very physical and adjusted
only a little bit. For the cut rcut one expects a value near
to 1 GeV and our final value is rcut = 0.16 fm. For c we
obtain c = 0.35 fm. The coupling in the infra-red was es-
timated in our model to be 0.5 [45,46] and here our final
value is αs(∞) = 0.75.

4 Results for the different reactions

4.1 Elastic hadron-hadron scattering

The hadron-hadron profile function is obtained by smear-
ing the dipole-dipole profile function (13) with simple phe-
nomenological wavefunctions for the hadrons. For the
hadrons we use a diquark picture as indicated by the
good description of elastic hadron-hadron scattering at√

s = 20 GeV [27] and the suppression of the odderon
coupling [28,29]. We use a simple Gaussian wavefunction
and obtain

J =
∫

d2r1

4π

∫
d2r2

4π

∣∣Ψ1(r1)
∣∣2 ∣∣Ψ2(r2)

∣∣2 J̃ (14)

with

Ψ i(ri) =
√

2
Si

e
− r2

i
4S2

i

and Si being the hadron sizes fitted to the data at
√

s =
20 GeV. The wavefunctions are normalized as follows:∫

d2r

4π
|Ψ(r)|2 = 1.

Because of the large sizes of p, π and K mainly dipoles
which are larger than c contribute. Thus we get for

√
s =

20 GeV the same results as in the older publications and
describe the data very well. By increasing s our scattering
amplitudes now rise like T ∝ s1.08 and thus all hadronic
total cross section rise with the power of the soft-pomeron
and do fit the data.

4.2 Elastic photoproduction of vectormesons

Considering the process γ∗p → VM p for VM=ρ, ω, φ, J/Ψ
we have the following profile function

J =
∫

d2rP

4π

∑
f,h1,h2

∫
d2rγ

4π

∫ 1−zf

zf

dzΨ∗ VM
fh1h2

(~rγ , z)

×Ψγ
fh1h2

(~rγ , z)
∣∣ΨP(rP)

∣∣2 J̃ . (15)

The wavefunctions of the photon and the vectormesons
depend on the flavor f , the helicity hi of the (anti)quark
and on the momentum fraction z (1 − z) carried by the
quark (antiquark) with respect to the total momentum.
Our approach is based on an eikonal approximation [37]
where the (anti)quarks have to be fast as compared to
the fluctuations of the non-trivial QCD vacuum structure.
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Fig. 3. The total elastic cross section of pho-
toproduction of ρ, ω and φ as compared to low-
energy data [50,51] and HERA data [52–56].
The ω data are scaled with a factor 3. The
lines represent our exponential fit described in
the text

For z near to 0 or 1 the quark or antiquark respectively
becomes slow and in the cm-frame the validitty of the
eikonal approximation thus induces a cut of the z range
proportional to 1/W . For the scale of the cut we take

zu,d,s,c = 0.2 GeV/W.

Such an end-point cutting was already discussed in [34]
and introduces an additional energy dependence. With-
out this W dependence the scattering amplitude could al-
ways be written as a sum of the two pomerons. Especially
for large Q2, where the end-points of the wavefunction
become important, this energy dependence is important.
The wavefunctions are normalized with∫

d2r

4π
dz

∑
f,h1,h2

|Ψfh1h2(r, z)|2 = 1.

The photon wavefunctions can be computed using light
cone perturbation theory [47,48]. They depend on the po-
larization and virtuality of the photon and are given in
the Appendix. These wavefunctions can also be used for
small values of Q2 by introducing running quark masses
that depend on the virtuality and become equal to the
constituent masses for Q2 = 0 [31]. The exact relations
are given in the Appendix.

For the vectormesons we use the phenomenological
wavefunctions derived in [31]. For longitudinal polariza-
tion we have

ΨVM
fh1h2

(~r, z) =
cVM
f∑

f ′ cVM
f ′ ef ′/e

z(1 − z)
δh1,−h2√

2

×
√

2πfVM
√

NC
f(z)e−ω2r2/2 (16)

where cVM
f is the Clebsch-Gordan for the flavor f depend-

ing on the vectormeson and is given in Table 1 in the Ap-
pendix. With fVM we denote the vectormeson decay con-
stant and f(z) is modeled in a way proposed by Wirbel,

Stech and Bauer [49]:

f(z) = N
√

z(1 − z)e−M2
VM(z−1/2)2/(2ω2). (17)

The two parameters of these wavefunctions (N , ω) are
fixed by the normalization and the measured meson lep-
tonic decay constant. For small values of Q2 we have to
fix these parameters taking the running quark mass into
account (see Appendix B of [31]). Our results are given in
Table 1 in the appendix together with the wavefunctions
for transversal polarized vectormesons.

With these formulae we calculate the scattering am-
plitude of the vectormeson production. In this paper we
concentrate on total cross sections leaving for example the
slope for following publications. In Fig. 3 we show the re-
sult for the total elastic cross section of photoproduction
of ρ, ω and φ as compared to experimental values.

To obtain the effective energy dependence we used a
simple exponential fit

σtot = a

(
W

20 GeV

)b

(18)

with the result

ρ ω φ

a[µb] 7.49 0.814 0.664
b 0.27 0.28 0.31

The power is near to the pure soft-pomeron which shows
that for these processes mainly large dipoles, larger than
the cut c, contribute and the hard-pomeron is negligible.
In our results only the pomeron-part is included and not
the contribution from Regge-trajectories. This explains
why our results would underestimate the data for W ≤
20 GeV, especially for the ρ and ω. We also observe that b
increases slightly by going from ρ to φ which is due to the
increasing mass and thus the smaller size of the meson.

Now we come to the more interesting case of J/Ψ pho-
toproduction. Our result is shown in Fig. 4.
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Fig. 4. The total elastic cross section of pho-
toproduction of J/Ψ (crosses) as compared to
low-energy data [57,58] and HERA data [59–
61]. Fit 1 represents again our exponential fit
(18) and fit 2 is a fit with two powers (19).
There are also preliminary H1 data for larger
W (see for example [62]) which confirm the
concave behavior of our result

The exponential fit to our results with large W gives

J/Ψ

a[nb] 14.22
b 0.85

but the data have the tendency to grow with a higher and
higher power for large W . The large value of b = 0.85
shows that for the J/Ψ small dipoles are important. Our
data can be well described over the whole W range by a
fit with two powers, where we fix one to be 0.22 which is
approximately the behavior of the pure soft-pomeron in
this W range:

σtot = a

(
W

20 GeV

)0.22

+ b

(
W

20 GeV

)c

(19)

and we obtain
J/Ψ

a[nb] 8.88
b[nb] 8.31

c 1.00

which shows that to photoproduction of J/Ψ the hard-
and soft-pomeron contribute with similar size.

Because for J/Ψ the hard-pomeron is important it is
also interesting to investigate how much the total result
is due to the contributions calculated within the MSV
(dipoles larger than rcut) or due to the two gluon exchange
χ̃per. Therefor we show in Fig. 5 the contribution of χ̃, the
nonperturbative part calculated in the MSV, as compared
to the total cross section.

From Fig. 5 we conclude that the dipoles for J/Ψ pho-
toproduction are larger then the cut rcut. The strong rise
with W is due to dipole sizes between rcut and c which are
treated with the MSV but are increased with the power
of the hard-pomeron.

4.3 Elastic electroproduction of vectormesons

We consider in this subsection the electroproduction of
vectormesons. Our main interest is to show how our model
can describe the rising effective pomeron power with ris-
ing virtuality Q2. Therefor we concentrate on the ρ and
J/Ψ meson and only investigate the total cross sections.
We leave the study of the ω and φ and the discussion
of the differential cross section or the different behavior of
the longitudinal and transversal contribution for following
publications.

In Fig. 6 we show our result for the electroproduction
of the ρ meson for different values of Q2 as a function of
W .

We obtain a quite good description of the data tak-
ing also the preliminary results [66,67] into account. Our
results are always below the ZEUS data which are larger
then the H1 data for the same Q2. The ZEUS data have
a large overall error due to normalization uncertainties
which is not included in the figure. For the whole W range
our results can be well described by the two power fit (19)
with the result

Q2[ GeV2] 0.5 2 7 10 12 20

a[nb] 2264 287 17.2 5.65 3.26 0.654
b[nb] 76.2 51.4 6.40 3.83 2.57 0.740

c 1.00 0.80 0.96 0.94 0.96 1.03

The simple exponential fit (18) describes our result very
good for large W > 80 GeV and we obtain

Q2[ GeV2] 0.5 2 7 10 12 20

a[nb] 2064 291 17.5 7.25 4.43 1.08
b 0.34 0.44 0.71 0.77 0.82 0.92

The rising of b with Q2 shows that by increasing the vir-
tuality one probes smaller and smaller dipoles which are
coupled to the hard-pomeron. This rise of the effective
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Fig. 5. The total elastic cross section of pho-
toproduction of J/Ψ with all contributions and
only the nonperturbative contribution
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Fig. 6. The total elastic cross section of photo-
and electroproduction of ρ. The experimental
electroproduction data are from H1 [63] for
Q2 = 10 GeV2 and 20 GeV2. The ZEUS data
[64] are scaled to the same Q2 values and the
low-energy data are from [65]. There are new
preliminary HERA data (see for example [66,
67]) and our results are shown at some Q2 val-
ues of these analysis

pomeron power with Q2 is in agreement with the experi-
ment.

In Fig. 7 we show our result for the electroproduction
of the J/Ψ for different values of Q2 as a function of W .

As can be seen from Fig. 7 we underestimate the H1
data for Q2 = 16 GeV2 but comparison with the new
preliminary HERA data (see for example [66]) is more
satisfactory. For these large values of Q2 our results can
only be trusted for larger values of W . Thus we did not
include values with W < 20 GeV in the plot where more
experimental data exist. Our results can be well described
by the simple exponential fit (18) with the result

Q2[ GeV2] 3.7 13 16

a[nb] 5.86 1.27 0.903
b 0.91 1.01 1.02

Again b is rising by increasing Q2 but for the J/Ψ already
for photoproduction the dipoles are quite small and thus
the effect is here not as dramatic as for the ρ meson.

4.4 The proton structure function F2(x, Q2)
and the total cross section of γ-p scattering

Now we come to the proton structure function F2(x, Q2),
that is the total cross section of γ∗-p scattering. The profile
function is given by

J =
∫

d2rP

4π

∑
f,h1,h2

∫
d2rγ

4π

×
∫ 1−zf

zf

dz
∣∣∣Ψγ

fh1h2
(~rγ , z)

∣∣∣2 ∣∣ΨP(rP)
∣∣2 J̃ . (20)

Using the different photon polarizations we obtain with
(6) and (7) the total cross sections σL, σT and the proton
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Fig. 7. The total elastic cross section of photo-
and electroproduction of J/Ψ . The experimen-
tal electroproduction data are from H1 [63]
for Q2 = 16 GeV2. There are new prelimi-
nary HERA data (see for example [66]) and
our results are shown at some Q2 values of
these analysis. For Q2 = 3.7 GeV2 and Q2 =
13 GeV2 our result agrees well with these pre-
liminary data

structure function F2 and FL can be calculated

F2 =
1

4π2αem

Q4(1 − x)
Q2 + 4m2

Px2 (σL + σT)

FL =
1

4π2αem

Q4(1 − x)
Q2 + 4m2

Px2 σL. (21)

The energy W can be expressed by W 2 = Q2/x −
Q2 +m2

P. In our approach we are limited to large energies,
W > 20 GeV, because we only take the pomeron and not
the Regge contributions into account. Also the value of
x is limited in our approach. It has to be small enough
because we can only describe soft interactions with W
being the largest scale. In the plots our result is always
shown for x < 0.05. In Fig. 13 and Fig. 14, presented at
the end of this section, we compare our result for F2 with
the experimental data for 0.11 GeV2 ≤ Q2 ≤ 5000 GeV2

and x-values as described above.
The figures show that our model describes all the data

in the restricted W and x range very well. We want to
remind, that only for Q2 ≥ 35 GeV2 the contributions
coming from very small dipoles, smaller than rcut, are im-
portant in our approach. But this is the regime where
the more sophisticated perturbative approaches work very
well. In our approach we will concentrate mainly on the
behavior for 0 ≤ Q2 ≤ 35 GeV2 where we observe the
transition from the soft- to the hard-pomeron. To obtain
this effective energy dependence of the structure func-
tion for different scales we calculate the effective pomeron
power λeff by fitting our results for 10−4 ≤ x ≤ 10−2 with

F2(x, Q2) = a
Q4(1 − x)

Q2 + 4m2
Px2 W 2λeff

= a
Q4(1 − x)

Q2 + 4m2
Px2

(
Q2

x
− Q2 + m2

P

)λeff

(22)

for fixed Q2. The result is shown in Fig. 8.
Our result is in very good agreement with published

experimental data [41,43] and preliminary ZEUS data.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 1 10 100 1000 10000

la
m

bd
a_

ef
f

Q^2 [GeV^2]

Fig. 8. The effective pomeron power λeff as defined in (22) as
a function of Q2. The error bars are due to the numerical error
of our results for F2

The transition from the soft-pomeron at low Q2 to the
higher power at large virtuality can be observed. This
transition takes place between 1 and 10 GeV2. This re-
sult shows also the importance of the energy dependence
of the photon wavefunction. Without this end-point cut-
ting the maximal λeff would be 0.28 but this is enhanced
to 0.36 which is in good agreement with experiment. But
we want to remind that the behavior for asymptotic large
W , that is asymptotic small x is always given by the hard-
pomeron that is 0.28. This effective W dependence in the
considered x range is also the reason why the two pomeron
fit, F2 = a x−0.08 + b x−0.28, would lead to unphysical,
negative a’s for large Q2 > 20 GeV2. Nevertheless for
Q2 ≤ 20 GeV2 this fit does describe our result well and
the result for a and b as function of Q2 is shown in Fig. 9

Finally we discuss the dependence of F2 for fixed x on
Q2. To do so we calculate the so called Q-slope

∂F2(x, Q2)
∂ lnQ2 (23)
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Fig. 10. The Q-slope as a function of x calculated at values
for Q2 given by (25)

which would be independent of Q2 if the data could be
fitted by

F2(x = fixed, Q2) = a + b ln(Q2). (24)

It turns out that this fit does not work well. So one has to
specify the Q2 value at which one calculates the Q-slope
for given x. Following the analysis of the experimental
data in [68] we use Q2 values given like in [69] by

Q2
x = 3.1 · 103 x0.82. (25)

In Fig. 10 we show our result for the Q-slope as a function
of x.

To compare with the experimental data we present in
Fig. 11 a plot of an analysis of the HERA data done by
Abramowicz and Levy [70]. From Fig. 10 and Fig. 11 we
conclude that we describe the Q2 dependence very well
except for the data at large x. Especially we find that the
Q-slope falls for small x after it reaches a maximum at
x ≈ 1 · 10−4.

We have also calculated the total cross section of γ∗-p
scattering where we can include the photoproduction. To
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Fig. 11. The Q-slope as a result of an analysis of HERA data
[68] as a function of x. In this figure, which is taken from [70],
also the result of the GRV94 parameterization is shown which
can not describe the low-x behavior
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Fig. 12. The ratio of the longitudinal to the transversal cross
section RL/T for fixed W as a function of Q2. At Q2 =
0.01 GeV2 we put the photoproduction point

compare with experimental data we show in Fig. 15 the
total cross section as a function of Q2 for fixed W .

From Fig. 15 we conclude that we obtain the right Q2

dependence for all values of W . Especially the transition at
Q2 ≈ 0.4 GeV2 is clearly predicted. The photoproduction
values for large W are also in very good agreement whereas
we underestimate the value at W = 20 GeV. The reason
for this is that the Regge contributions are important and
not included in our model as already pointed out in [34].

After discussing the results for F2 we investigate in the
following different contributions to the structure function.
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Fig. 13. The proton structure function F2(x,Q2) for fixed values of Q2 as a function of x. Here Q2 ≤ 3.5GeV2. The H1 data
1-4 are [71,72,41,43], the ZEUS data 1-5 are [73–75,42,76] and the low-energy data are [77–79]

We will concentrate on the charm contribution F c
2 and

on the ratio of the longitudinal to the transversal cross
section

RL/T =
σL

σT
. (26)

In Fig. 16 we compare our results for F c
2 at fixed Q2 as a

function of x with experiment.
As can be seen from Fig. 16 our charm contribution is

in good agreement with the data for not too large x.
Finally we show in Fig. 12 the ratio of the longitudinal

to the transversal cross section for fixed W as a function
of Q2.

As can be seen from Fig. 12 RL/T is rather independent
of W for large W . At Q2 ≈ 1 GeV2 it reaches a maximum
where the longitudinal part is about 25%. For large Q2,
that is large x we observe a rise of RL/T which is maybe
just an artifact of our bad description at this kinematic
regime. But nevertheless our results indicate that RL/T

flattens off at Q2 ≈ 100 GeV2. Our result for RL/T is
quite similar to the one obtained in [21].
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Fig. 14. The proton structure function F2(x,Q2) for fixed values of Q2 as a function of x. Here Q2 > 3.5GeV2. The data set
is the same as in Fig. 13

5 Summary

In this paper we have demonstrated that the different en-
ergy and Q2 behavior of the different considered processes
can be described by making a uniform phenomenological
ansatz for the energy dependence of dipole-dipole scatter-
ing from which all processes are constructed. The energy
dependence is due to the exchange of two pomerons be-
tween the dipoles. The soft-pomeron with an intercept of
1.08 couples only to dipoles which are larger than the cut
c and the hard-pomeron with an intercept of 1.28 con-

tributes if at least one dipole is smaller than c. For the
slope of the soft-pomeron we take the standard value of
0.25 GeV−2 whereas we assume the slope of the hard-
pomeron to be zero at least for small t. The main goal of
this paper is not to present a fit of F2 or the vectormeson
production data but to show how the different effective
energy behavior of the different processes is due to the
wavefunctions making the process dominated by smaller
or larger dipoles.

Our approach, which turns out to describe all these
processes well is based on the following assumptions: The
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Fig. 15. The total cross section.
The data set is the same as in
Fig. 13. For the data selection we al-
lowed W values which differ by at
most 10% from the quoted value.
The photoproduction data are from
[80–82] and are displayed at Q2 =
0.01 GeV2 together with our result.
For convenience the data are scaled
with the given factors

processes can be calculated by smearing the dipole-dipole
scattering with appropriate wavefunctions which are ei-
ther phenomenologically (hadrons, vectormesons) or per-
turbatively motivated (photons). At fixed cm-energy of
20 GeV the dipole-dipole scattering can be calculated us-
ing the Model of the Stochastic Vacuum. This nonpertur-
bative model can only be used if the dipoles are not to
small. To describe the data up to Q2 ≤ 35 GeV2 it is suf-
ficient just to cut dipoles which are smaller than a new
introduced cut rcut. In this kinematic regime one observes
the transition from the soft to the hard behavior and this
can be described in our model very well. We then showed
that we can extend our approach to even harder processes
by calculating for the very small dipoles the leading per-

turbative contribution with a running strong coupling on
the 1-loop level which is frozen in the infra-red to be
αs(∞). But for such hard processes the more sophisti-
cated perturbative descriptions work very well and this is
not the regime of our main interest.

By adjusting the three new parameters (c, rcut, αs(∞))
we obtain a very good description of the experimental re-
sults for the following physical values

c rcut αs(∞)

0.35 fm 0.16 fm 0.75

We want to point out that the obtained values are not the
main result of this paper. Indeed by changing for exam-
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Fig. 16. The charm contribution F c
2 (x,Q2) to the proton

structure function for fixed values of Q2 as a function of x.
The H1 data are from [83], the ZEUS data from [84] and the
low-energy data from [85]. There are preliminary ZEUS results
(see for example [86]) which also fit our data
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ple slightly the hard-pomeron intercept one obtains after
readjusting the three parameters a quite similar good fit.
In this framework we obtain not only the right transition
from the soft to the hard energy dependence but do also
predict the absolute size of the cross sections. Especially
we want to point out that we get simultaneously the strong
energy dependence of photoproduction of the J/Ψ and the
small-x dependence of F2 for all values of Q2.

Off course we have also limitations in our approach:
The considered cm-energy has to be large enough to ensure
that no Regge-trajectories are important. We can only
consider soft processes where the internal energy is the
largest scale. Thus our x values are limited to be small
enough or for electroproduction with large Q2 we have to
go to larger W .

One important observation in our approach is that we
have to couple quite large dipoles (up to 0.35 fm) to the
hard-pomeron. The scattering of these dipoles can not be
calculated in a simple perturbative way and we use the
Model of the Stochastic Vacuum. Exactly these dipoles are
responsible for the strong rise of the J/Ψ photoproduction
with W .

Our treatment of the energy dependence due to the
two pomerons is very similar to the recent publication of
Donnachie and Landshoff [24]. Whereas DL had to fit the
coupling as a function of Q2 to the HERA data we couple
the pomerons to the dipoles and their interaction is cal-
culated as described above. The main difference of these
two approaches is that in our approach the structure func-
tion F2 can not be written as F2 = a x−0.08 + b x−εhard

because off the additional W dependence of the photon
wavefunction. DL obtain a very large intercept for the
hard-pomeron, εhard = 0.435, whereas our εhard is 0.28.
In their paper DL point out that also their hard-pomeron
intercept is not very well fixed by the fit and has a large
error. Both approaches can describe the data because in
our treatment the effective power is enhanced due to the
photon wavefunction whereas DL obtain a very large con-
tribution from the soft-pomeron even for Q2 ≥ 100 GeV2

which makes the effective power smaller.
Maybe the nicest feature of the presented approach

is, that one can calculate the energy dependence of all
processes based on dipole-dipole scattering without any
new parameters. In [87] we investigate for example the γ-
γ physics and the results are very satisfactory without any
free parameters.
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Appendix:
The photon and vectormeson wavefunctions

For longitudinal polarized photon we have

Ψγ
fh1h2

(~rγ , z) = −
√

NCefδh1,−h22z(1−z)Q
K0(εrγ)

2π
(27)

where ε =
√

z(1 − z)Q2 + mf (Q2) and ef is the quark
charge. In [34] the application was extended to real pho-
tons by using (anti)quark masses that depend on the vir-
tuality and become equal to the constituent masses for
Q2 = 0. We use in this paper the parameterization given
in [34], 18/19:

mu,d =

{
0 | Q2 > 1.05 GeV2

0.22 GeV(1 −Q2/1.05 GeV2) | Q2 ≤ 1.05 GeV2

}
ms ={

0.15 GeV | Q2 > 1.6 GeV2

0.15 GeV + 0.16 GeV(1 −Q2/1.6 GeV2) | Q2 ≤ 1.6 GeV2

}
mc = 1.3 GeV. (28)

For transversal photons, e.g. with polarization λ = +, we
obtain:

Ψγ
fh1h2

(~rγ , z) =
√

NCef

√
2
(

ieiθε (zδ+− − (1 − z)δ−+)

× K1(εrγ)
2π

+ mf (Q2)δ++
K0(εrγ)

2π

)
(29)

where θ is the angle of ~rγ in polar coordinates and δ+− =
δh1,+δh2,−. For a transversal photon with λ = − we find
analogously

Ψγ
fh1h2

(~rγ , z) =
√

NCef

√
2
(

ie−iθε ((1 − z)δ+− − zδ−+)

× K1(εrγ)
2π

+ mf (Q2)δ−−
K0(εrγ)

2π

)
. (30)

For transversal vectormesons with λ = + we obtain

ΨVM
fh1h2

(~r, z) =
cVM
f∑

f ′ cVM
f ′ ef ′/e

(
iω2reiθ

MVM

(
zδ+−

−(1 − z)δ−+
)

+
mf (Q2)
MVM

δ++

)

×
√

2πfVM
√

NC
f(z)e−ω2r2/2 (31)

and for λ = −

ΨVM
fh1h2

(~r, z) =
cVM
f∑

f ′ cVM
f ′ ef ′/e

(
iω2re−iθ

MVM

(
(1 − z)δ+−

−zδ−+
)

+
mf (Q2)
MVM

δ−−

)

×
√

2πfVM
√

NC
f(z)e−ω2r2/2. (32)



248 M. Rueter: Energy and Q2 dependence of elastic vectormeson production and the proton structure function F2

Table 1. The parameters for the vectormeson wavefunctions

ρ ω φ J/Ψ

MVM[ GeV] 0.770 0.782 1.019 3.097

fVM[ GeV] 0.153 0.0458 0.0791 0.270

cVM
f cu,d = ±1/

√
2 cu,d = +1/

√
2 cs = 1 cc = 1

N long(Q2 = 0) 15.10 15.47 15.70 19.03

ω−1
long(Q

2 = 0)[ fm] 0.597 0.658 0.536 0.290

N trans(Q2 = 0) 6.75 7.61 7.59 9.05

ω−1
trans(Q

2 = 0)[ fm] 0.928 0.957 0.761 0.345

N long(Q2 > 1.6 GeV2) 15.10 15.47 15.70 19.03

ω−1
long(Q

2 > 1.6 GeV2)[ fm] 0.597 0.658 0.536 0.290

N trans(Q2 > 1.6 GeV2) 11.50 13.21 11.37 9.05

ω−1
trans(Q

2 > 1.6 GeV2)[ fm] 0.909 0.934 0.730 0.345
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